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Abstract MicroRNAs (miRNAs) have been shown to

play an important regulatory role in plants and animals. A

large number of known and novel miRNAs can be

uncovered from next-generation sequencing (NGS) experi-

ments that measure the complement of a given cell’s small

RNAs under various conditions. Here, we present an

algorithm based on radial basis functions for the identifi-

cation of potential miRNA precursor structures. Compu-

tationally assessing features of known human miRNA

precursors, such as structural linearity, normalized mini-

mum folding energy, and nucleotide pairing frequencies,

this model robustly differentiates between miRNAs and

other types of non-coding RNAs. Without relying on cross

species conservation, the method also identifies non-con-

served precursors and achieves high sensitivity. The pre-

sented method can be used routinely for the identification

of known and novel miRNAs present in NGS experiments.
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1 Introduction

Knowledge of non-coding RNAs (ncRNAs) is integral for

understanding complex mechanisms occurring within the

cell [1]. Types of ncRNAs include rRNAs, tRNAs, miRNAs,

siRNAs, snRNAs, snoRNAs and scaRNAs; functions of the

types of ncRNAs vary extensively with cellular functions,

such as cell development or differentiation, and their

deregulation is frequently associated with diseases such as

cancer [2]. One of the most important ncRNAs are miRNAs

because, while only being around 22 nucleotides long, this

RNA plays an important role in plants and animals in regu-

lating the protein levels of many genes involved in functions

such as developmental timing, apoptosis, cell proliferation

and differentiation, anti-viral defense and hypothetically

many other cellular roles [3, 4]. Since miRNA has the ability

to regulate many vital biological functions, it formulates a

plethora of opportunities for miRNA research [3]. Only

when scientists started to understand how miRNAs function

within a cell did the importance of microRNA research

become comprehendible [5].

The expression of miRNA begins in the nucleus as a

long strand of primary miRNA (pri-miRNA), which, in

animals, is then processed by the protein complex Drosha

into a precursor miRNA (pre-miRNA) [4]. Exportin-5 then

transports the pre-miRNA into the cytoplasm, where it is

processed by the protein Dicer into an miRNA duplex [4].

The strand in the duplex, complementary to the final

miRNA strand, is usually degraded [4]. Then, miRNAs

bind to mRNAs and regulate their expression with the aid
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of the RNA interference silencing complex (RISC) [4, 6].

Argonaute (AGO), one of the proteins that make up RISC,

either cleaves the mRNA or represses translation, causing

the inevitable degradation of the mRNA [4]. By deter-

mining the features of miRNA processing, novel miRNAs

can be predicted with relatively high accuracy [2, 7, 8].

The discovery of novel ncRNAs is difficult because the

methods used to isolate small RNAs can be inaccurate and

inefficient. Next-generation sequencing (NGS) technolo-

gies (also called flow cell-, massively parallel- or deep-

sequencing) are considerably cheaper [9] and can detect

many small RNAs with a higher degree of reliability than

methods such as Sanger sequencing protocols and cloning

[7]. Drawbacks in the use of deep sequencing include the

extensive amount of data necessary to organize from a

collection, because each sequence read can align to mul-

tiple areas on the genome even without consideration of a

possible nucleotide error within the read [2, 8, 10]. Sorting

and compressing deep-sequencing data is necessary so that

the information can be easily accessed for the researcher’s

purpose. An ideal use of the deep-sequencing sets is the

expression profiling of known and novel miRNAs because

of their similar length distribution and their relatively high

abundance within the reads [2].

When searching for potential miRNAs from within the

genome, the tradeoff between more false positives, if

miRNA features are not strict enough, or eliminating

potential miRNAs, if miRNA features are too firm [2, 7, 8],

has to be balanced. Sequence conservation and structural

information of previously found miRNA precursors can be

exploited for the purpose of finding novel miRNAs. Algo-

rithms to this end heavily rely on conservation information

and exclude a large number of non-conserved miRNAs

[10]. More recent methods thus focus on the ab initio pre-

diction of miRNAs, without relying on comparative

genomics. The assessment of thermodynamic properties of

the miRNA precursor is fairly common because of the

relative stability of miRNAs when compared to most other

ncRNA [1, 10, 11]. Using thermodynamics alone, however,

can either create too many potential pre-miRNA, producing

low specificity (ratio of correctly identified non-miRNA

RNAs (the negatives) over all negatives), or result in low

sensitivity when strict cutoffs are applied. Additional fea-

tures such as GC content, number of paired bases, negative

normalized minimum folding energy (nnMFE) and linearity

[10–12] are used to increase the specificity. Some miRNA

gene finders are restricted to the analysis of NGS data,

comparable to the presented approach. The first such

approach, miRDeep [7], uses a model that reflects the

enrichment of sequence fragments according to the cleav-

age of the pre-miRNAs with Dicer. The method used in

Burnside et al. [13] relies only on structural features of the

predicted precursor hairpins.

In the following, we present a pre-miRNA prediction

algorithm tailored for the elimination of ncRNAs that are

not miRNAs in NGS data, without the use of conservation

information.

2 Results

2.1 Assessing potential features and miRNA scoring

Predicting potential pre-miRNAs using NGS data has dif-

ferent requirements than prediction based on genomic

sequences alone, because roughly 60% of the NGS reads

can be mapped to miRNAs [2]. This entails a new class

of prediction algorithms that are less reliant on typical

miRNA features to reach higher prediction sensitivities.

The most commonly used features are normalized free

energy, paired/unpaired bases ratio, GC content, hairpin

structure linearity and evolutionary conservation [10–12].

We exclude conservation from this analysis to enable the

prediction of novel non-conserved mature miRNAs. The

most informative features and their definitions are:

GC content is defined as the percentage of guanine or

cytosine nucleotides in the given sequence.

Negative normalized minimum folding energy

(nnMFE) is calculated as the negative minimum free

energy (MFE) as obtained from RNAfold program of the

Vienna package [14] divided by the length of the folded

sequence. As larger structures can obtain lower MFEs,

this normalization compensates for the correlation

between the free energy and the sequence length (Pear-

son’s R2 = 0.15).

Ratios of A to U (ratio of G to C) are characterized by

the number of adenine (guanine) divided by the number of

uracil (cytosine) nucleotides in the potential precursor.

Unbound nucleotide percentage is the number of

unpaired nucleotides normalized by the length of the

potential precursor.

Linearity can be described as how relatively straight the

hairpin structure of the precursor is and determined by the

amount of loops, which form against the direction of

the hairpin. As an approximation, linearity is calculated as

follows. All unpaired nucleotides are removed from the

structure, all opening hydrogen bonds in the first half of the

resulting structure are counted and this count is divided by

the total length of the first half of this structure, repre-

senting the linearity score.

To determine the importance of features to find novel

pre-miRNAs, we assess their ability to discriminate

miRNAs among other ncRNAs, especially rRNAs and

tRNAs. A feature significance is defined as the ratio of the

number of known miRNAs to the number of all ncRNAs

including miRNAs, where both numbers count the cases in
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which the value of the feature is within the 95% percentile

around the mean of that feature for known human miRNAs.

The feature significances are shown for each ncRNA

type found in Ensembl in Fig. 1. In these comparisons, a

significantly higher value of the linearity of miRNAs

compared to all other ncRNAs is already evident. The class

with the largest feature significance differences compared

to miRNA is the small nuclear RNAs (snRNAs) that show

both relatively low energetic stability and the lowest

structural linearity. This can be ascribed to the known

occurrence of larger unpaired segments in these structures.

Linearity had the highest ratio of 54%, confirming its

importance found also in earlier studies [11]. Interestingly,

the GC content showed low importance (15%) for the

discrimination between miRNAs and other ncRNAs, in

contrast to previous studies [10, 11] that contrast miRNAs

with other hairpin structures as negative examples. This

exemplifies the importance of the classification scheme

used in the following.

2.2 Pre-miRNA similarity analysis

A discretized radial basis classifier using the miRNA fea-

tures, linearity, negatively normalized MFE and norma-

lized unbound nucleotides, is used to identify miRNA.

Analysis of these three features shows (Fig. 2) that the

histograms of known miRBase pre-miRNAs are normally

distributed (two sided for nnMFE and unbound nucleotides

and one sided for linearity). A discretized quadratic fit to

the distributions of these features is used as the radial basis

function independently for each feature. The radial basis

centers are approximated at 0.44 for the nnMFE, 1 for

linearity and 0.28 for normalized unbound nucleotides. The

pre-miRNA similarity score (miSA score) for a potential

miRNA is defined as the sum of the scores for each of the

three features according to Table 1. To account for the

higher significance of the linearity feature described above,

a maximal score of 7 is used for this feature, while the

other features may contribute a maximal score of 6.

2.3 miRNA precursor prediction performance and tests

on NGS data

When comparing the predicted miSA scores for all types of

known human ncRNAs, the scores for miRNAs are sig-

nificantly higher than for any other ncRNA class (Fig. 3).

The ncRNA class having scores closest to the miRNA

family is the small cytoplasmic RNAs (scRNA) that shows

both high stability and a large fraction of bound nucleotides

similar to miRNAs. This is due to their typical structure

with a large amount of helical regions, but the branched

arrangement of these helices leads to a low linearity score.

The high specificity discriminating against all other

ncRNAs for scores above 10 is also evident from the ROC

curve in Fig. 4. These classifications are obtained from all

ncRNAs present in the NGS data set. At this cutoff, a

sensitivity of 63% is achieved with a false positive rate of

3%. The area under the ROC curve (AUC) sums up to 0.89.

The scores for the 134 known miRNAs and additional 2535

potential miRNAs obtained from scoring all hairpins on the

human genome with lengths between 40 and 150 nucleo-

tides and having overlapping reads in the NGS data are

available as supplementary material 1.

3 Conclusions

The rapidly increasing use of NGS for unbiased measure-

ment of small RNA expression levels produces large

amounts of data in which both known and novel ncRNA

have to be mined. The method presented here for pre-

miRNA prediction in this type of data is designed to obtain

Fig. 1 Assessing potential

features. The feature

significance, defined as the ratio

of the number of miRNAs to the

total number of ncRNAs, which

are in the 95% percentile of the

features distribution on mirBase

miRNAs, is shown for each type

of Ensembl-determined ncRNA

(see Methods) and for the

features: nnMFE, ratio of A to

U, ratio of G to C, unbound

nucleotide percentage and

linearity
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Fig. 2 Analyzing motifs of precursor features. The three features

used for classification are calculated for all human miRBase pre-

miRNAs. An enrichment of linear structures can be observed and this

feature, representing the relative straightness of the hairpin, is most

significant for the classification

Table 1 Precursor analysis scoring system

Percentage of pre-miRNA Difference from mean Value added to score nnMFE

0.988 0.27 1

0.940 0.19 2 STD

0.842 0.14 3 0.104

0.748 0.11 4

0.570 0.07 5

0.363 0.04 6

Percentage of pre-miRNA Difference from mean Value added to score Linearity

0.996 0.20 1

0.991 0.16 2 STD

0.960 0.00 7 0.032

Percentage of pre-miRNA Difference from mean Value added to score Unbound

0.990 0.2 1

0.951 0.13 2 STD

0.882 0.1 3 0.069

0.788 0.08 4

0.581 0.05 5

0.393 0.03 6

This table defines the scoring of potential pre-miRNA. Three groups of scores are defined for the three features used. The ‘percentage of pre-

miRNA’ indicates the fraction of miRBase human miRNAs where the feature of the group is within the range defined in ‘difference from mean’.
The used means for the scores are 0.44 for nnMFE, 1 for linearity, and 0.28 for normalized unbound nucleotides. From each feature only one

value is added toward the accumulative score. (STD is the standard deviation)
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high sensitivity by avoiding the requirement of any evo-

lutionary conservation. The feature selection using all types

of known ncRNAs results in a reliable discrimination

between miRNAs and all other classes of ncRNA. This

aspect has not been addressed adequately in the related

work by [7], where all known other ncRNAs are removed

before scoring. However, as the set of ncRNAs is still

incomplete, many unknown non-miRNA ncRNAs might be

classified as false positives. The sensitivity of the method

presented here is likely to increase novel miRNA retrieval.

If the number of potential novel miRNAs has to be reduced

further, a subsequent cross species conservation analysis

may be performed.

4 Materials and methods

4.1 Data sets

4.1.1 NGS data

The NGS data set of Human HeLa Cells for small RNAs

used by (77) is used. (Data Set available at: http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10829). This

set contains more than 320,000 sequences of 35 nucleotides

length each.

4.1.2 MirBase

All miRNA sets used for training are from the human

sequences in miRBase 12.0 [15]. A total of 695 known

human pre-miRNA and corresponding mature miRNAs are

used.

4.1.3 Ensembl

The annotation of noncoding RNAs is extracted from

Ensembl release 50 and includes both predicted and known

ncRNAs [16].

4.2 Short sequence genomic alignments

4.2.1 MegaBLAST

The NGS data was aligned to the human genome sequences

(NCBI Build 36.1) using the MegaBLAST tool [17] to

allow for a small number of mismatches, insertions and

Fig. 3 Pre-miRNA similarity

scores for NcRNA. Using data

from all annotated ncRNAs, a

histogram of the scores from the

Precursor Analysis Scoring

System (miSA scores)

demonstrates the ability to

classify miRNAs versus other

ncRNAs
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Fig. 4 ROC analysis for detecting miRNAs at different thresholds.

Using data from Human HeLa Cells NGS data set for only small

RNAs [7], the sensitivity (true positive rate) for detecting miRNAs

and the specificity (false positive rate) is shown for different cutoffs

of the miSA scores. The threshold values from 17 to 0 are indicated

with dots
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deletions in the same way as that described in the miRDeep

approach [7].

4.3 RNA structure prediction

4.3.1 Vienna package

All RNA secondary structure and energy (MFE) predic-

tions for the potential precursors are determined by the

Vienna Package 1.7.2 [14]. In accordance with most other

miRNA gene finding approaches, only the energetically

best structure is considered.
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